tyc1286太阳成集团
博学笃行 止于至善
导航菜单
2021.04.28 清华大学​ 陈大广 副教授 Talenti's comparison theorem and applications on Riemannian manifold with nonnegative Ricci curvature
发布时间: 2021-04-19 09:13 作者: 点击: 762

微分几何学术报告

 

 

报告题目:Talenti's comparison theorem and applications on Riemannian manifold with nonnegative Ricci curvature

 

报告人:陈大广副教授  清华大学

 

报告摘要:In this talk, we will report Talenti's comparison theorem for Poisson equation on complete noncompact Riemannian manifold with nonnegative Ricci curvature. We will show how to use Talenti’s comparison result to prove the Faber-Krahn inequality for the first eigenvalue of Dirichlet Laplacian, $L^1$- and $L^\infty$-moment spectrum, especially Saint-Venant theorem for torsional rigidity and a reverse H\"older inequality for eigenfunctions of Dirichlet Laplacian. This is the joint work with Professor Haizhong Li.

 

 

时间:2021428日(星期四)下午330 — 430

 

 

地点:逸夫楼917

 

 

报告人简介:

陈大广,清华大学数学系副教授,博士生导师。主要研究领域是几何分析与微分几何,特别是流形上椭圆算子的特征值估计,做出了重要工作,在《Communications in Mathematical PhysicsMathematische ZeitschriftCalc. Var. Partial Differential EquationsJ. Differential Equations等国际著名数学期刊发表了多篇论文