偏微分方程系列报告
报告题目: Time-asymptotic stability of Riemann solutions to viscous conservation laws
报告人: 王益 研究员 (中国科学院数学与系统科学研究院)
报告摘要: First we talk about our recent progress on the time-asymotitc stability of generic Riemann solutions, consisting of different multiple wave patterns, to the 1D compressible isentropic Navier-Stokes equations/full Navier-Stokes-Fourier equations, which had been unsolved for a long time.Then the time-asymptotic stability of planar Riemann solutions to the multi-dimensional compressible Navier-Stokes equations and the stability of composite waves of degenerate Oleinik shock and rarefaction waves to scalar non-convex conservation laws will be presented.
报告人简介:王益,中国科学院数学与系统科学研究院研究员、博士生导师,中国科学院大学教授,曾获得国家优秀青年基金并入选第二批国家“万人计划”青年拔尖人才。主要从事非线性偏微分方程的研究工作,研究兴趣为流体力学方程组的相关数学理论,包括Boltzmann方程的流体动力学极限、流体力学方程组解的适定性(解的整体存在性、大时间渐进稳定性、粘性消失极限)等。主要论文发表在Arch. Ration. Mech. Anal.、Comm. Math. Phys.、Adv. Math. 和SIAM J. Math. Anal.等国际重要刊物上。
报告时间:2024.5.29 下午4:00-5:00
报告地点:教学楼308